化学品の市場調査、研究開発の支援、マーケット情報の出版

トリケップスセミナー

     開催日時:2019年11月1日(金)10:30~16:30
     会  場:オームビル  → 会場へのアクセス 
          〒101-8460 東京都千代田区神田錦町3-1
     参 加 費:お1人様受講の場合 46,000円 (税別/1名)
          1口(1社3名まで受講可能)でお申し込みの場合 57,000円 (税別/1口)

講 師

日野 英逸 氏  統計数理研究所 准教授  博士(工学)

<講師紹介>
■ 主経歴

  京都大学情報学研究科博士前期課程修了
  ㈱日立製作所システム開発研究所研究員
  早稲田大学博士後期課程修了(博士(工学))
  早稲田大学助教
  筑波大学助教,同 准教授

■ 専門・得意分野
  機械学習,データ解析,応用統計,スパースモデリング

■ 本テーマ関連の学会・協会・団体等
  電子情報通信学会,IEEE,日本神経回路学会,日本鉄鋼協会

セミナーの概要

 大量のデータに含まれる少数の本当に重要なデータを抽出したい,あるいは少数の観測から背後にある多数のパラメタを推定したい,といったニーズは様々な産業分野で日々産まれ続けている.計測技術の高度化やストレージの低価格化,折しものビッグデータブームに後押しされ,たくさんのセンサーによる計測結果を記録したはよいものの,その中から有用な情報を取り出すことが出来ないということも多い.
 スパースモデリングは,「同じことがらを説明できるならば,説明に用いるモデルは簡潔な方がよい」という,合理的な先見知識を導入することで,大量のセンサーデータに埋もれた本質的に重要な信号を取り出したり,未知のパラメタの数よりもはるかに少ない回数の計測データを用いてパラメタ同定を行ったりするための技術の総称であり,既に統計的データ解析,機械学習の現場において必要不可欠な方法論となっている.
 本セミナーでは,おもに統計における正則化線形回帰という視点からスパースモデリングを概観し,多数提案されている主要な発展的手法も解説する.さらに,具体的な問題をスパースモデリングにより定式化して効率的に解決する事例を,簡単なプログラム例とデモを交えて紹介する.

受講後、習得できること

 ・スパースモデリングの基本的な考え方がわかる
 ・スパースモデリングを回帰モデリングの観点から理解できる
 ・信号処理や自然科学の実問題への適用例が理解できる

講義項目

  1. 確率統計と線形代数の準備
    1.1 確率分布,密度関数
    1.2 行列のランク,ベクトルのノルム

  2. スパースモデリングの導入
    2.1 重回帰分析
    2.2 正則化回帰
    2.3 Lasso:L1正則化線形回帰

  3. 発展的な手法
    3.1 様々なスパース性
    3.2 正則化とバイアス
    3.3 一般化線形モデル

  4. オープンソースライブラリを利用した分析例
    4.1 glmnetによる正則化回帰・判別の例
    4.2 Fused Lassoによる時系列処理の例
    4.3 Graphical Lassoによる共分散構造選択の例

  5. まとめ

    (質疑応答)