化学品の市場調査、研究開発の支援、マーケット情報の出版

トリケップスセミナー

     開催日時:2019年2月20日(水)11:00~16:30
     会  場:オームビル  → 会場へのアクセス 
          〒101-8460 東京都千代田区神田錦町3-1
     参 加 費:お1人様受講の場合 47,000円 (税別/1名)
          1口(1社3名まで受講可能)でお申し込みの場合 57,000円 (税別/1口)

講 師

梅谷 俊治(うめたにしゅんじ)氏  
大阪大学大学院 情報科学研究科 准教授(博士(情報学)) 

<略歴、等>
 1998年 大阪大学 大学院基礎工学研究科 博士前期課程修了.
 2002年 京都大学 大学院情報学研究科 博士後期課程指導認定 退学.
  豊田工業大学助手,電気通信大学助教を経て,2008年より大阪大学大学院情報科学研究科准教授.現在に至る.
 専門は,数理最適化,アルゴリズム.
 日本オペレーションズ・リサーチ学会,情報処理学会,人工知能学会,INFORMS,MOS各会員.

セミナーの概要

 産業や学術の幅広い分野における現実問題の多くが最適化問題にモデル化できることが再認識されるようになりました.特に,現実世界から収集された大規模データを解析するだけではなく,計画立案や意思決定のために大規模データに基づく最適化問題を現実的な計算時間で解くことが求められています.
 本講義では,産業や学術の幅広い分野における現実問題の解決に数理最適化を活用するための実践的な枠組みを解説します.最後に,実務の事例に対する数理最適化の実施例を紹介して,現実問題に対して数理最適化を適用する際の流れと注意点について解説します.

講義項目

 1 組合せ最適化問題とその応用
  1.1 最適化手法による問題解決アプローチ
  1.2 組合せ最適化問題とその応用例
  1.3 組合せ最適化問題の難しさ
  1.4 計算困難な組合せ最適化問題に対するアプローチ

 2 整数計画ソルバーの利用法とモデル化
 整数計画問題は,産業や学術の幅広い分野における現実問題を定式化できる汎用的な最適化問題の1つです.最近では,整数計画ソルバー(整数計画問題を解くソフトウェア)の進歩がめざましく,現在では,大規模な実務上の最適化問題が次々と解決されています.
 本講義では,数理最適化の専門家ではない利用者が現実問題に取り組む際に必要となる,整数計画ソルバーの基本的な利用法とモデル化の技法を解説します.
  2.1 線形計画問題と整数計画問題
  2.2 整数計画ソルバーの現状
  2.3 整数計画ソルバーの利用法
  2.4 線形計画問題のモデル化
  2.5 整数計画問題のモデル化

 3 メタヒューリスティクスの設計と開発
 整数計画問題は多くの現実問題をモデル化できる汎用的な最適化問題ですが,整数計画ソルバーでは現実的な計算時間で最適解を求めることが困難な事例は少なくありません.しかし,現実には,最適解である保証はなくても現実的な計算時間で十分に精度の高い解が求まれば満足の行く事例が多いです.
 局所探索法は,そのような計算困難な組合せ最適化問題に対する近似解法の基本的な戦略の1つであり,多くのメタヒューリスティクスは局所探索法にさまざまなアイデアを加えて拡張したものと位置づけることができます.
 本講義では,現実問題に対してメタヒューリスティクスを開発する際に必要となる,局所探索法およびメタヒューリスティクスの基本的な枠組みと,効率的なアルゴリズムを実現するためのアイデアを具体的な事例を交えながら解説します.
  3.1 メタヒューリスティクス
  3.2 貪欲法と局所探索法
  3.3 局所探索法の設計と開発
  3.4 メタヒューリスティクスの枠組み

 4 現実問題に対する数理最適化の適用例の紹介
 実務の事例に対する数理最適化の実施例を紹介して,現実問題に対して数理最適化を適用する例の流れと注意点について解説します.